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Summa~. 

A solution to the viscous creeping-motion equations is developed, using cartesian tensors. The solution is 
motivated by the form of the boundary conditions of the problem and is, therefore, easily applicable to 
situations where the boundary conditions are expressible in cartesian-tensor form. Several illustrations of the 
method are given to show how the solutions for the pressure and velocity components can be constructed, 
directly and easily, from the general solution. 

1. Introduction 

In studying the rheological properties of suspensions, colloidal systems and polymer 
composites we often need solutions of the viscous creeping-motion equations. If we limit 
the discussion to steady, incompressible motion of such fluids, then it turns out that the 
equations determining the velocity vector and the pressure become linear partial differen- 
tial equations. As a result, a good variety of solutions of such equations applicable to 
different dimensions is available. Basically these solutions fall into three main categories, 
as has been summarized by Happel and Brenner [1]. The first method is that of Lamb [2], 
which uses spherical harmonics and which involves Legendre and associated Legendre 
polynomials. This method, though quite general in itself, becomes quite cumbersome in 
certain cases, because of its extreme generality. The second method uses a stream-func- 
tion technique which can be used only for two-dimensional problems and for those 
three-dimensional problems that exhibit some type of axial symmetry. Finally, we have 
the singularity method, first originated by Lorentz [3], which, though easy to apply, 
requires much guesswork to determine the appropriate singularities necessary to solve a 
particular problem. 

Most of the fluid-flow problems commonly encountered can be solved by at least one 
of the above methods. In many instances, however, the boundary conditions are presented 
in a fashion that is not readily translated to a form that is directly applicable to any of 
these methods. It is well-kalown that certain types of auxiliary conditions are appropriate 
only to certain corresponding types of partial differential equations. For example, 
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problems of potential theory lead to Dirichlet's problem and are, therefore, appropriate 
for elliptic equations. In the literature, sometimes the boundary conditions are given in a 
cartesian-tensor from which cannot always be easily put into a form that is usable for any 
of the methods mentioned above. 

The purpose of this paper is to develop, partially, another form for the general solution 
of the viscous creeping-motion equations, based on the use of cartesian tensors. The 
solution thus generated will be directly applicable to problems for which the boundary 
conditions are given in cartesian-tensor form and to those that can easily be written in 
this manner. In the present work, use will be made of arbitrary, spatially constant, 
second- and third-order tensors to generate the solution. The solution so obtained will be 
applied to a number of problems to illustrate its simplicity and usefulness. Even though 
the problems considered at present involve a particle of spherical shape, further applica- 
tions of the method, to take into account other shapes, will be considered in a future 
paper. 

2. Development of the solution 

We consider the flow field satisfying the creeping-motion equation, or Stokes equation, 

/~V Zu = Vfi, (1) 

and the continuity equation 

V . u  = O. (2) 

Here u is the velocity field, ~ the pressure and/L the dynamic viscosity. We assume that 
contains any conservative extraneous body forces that may be present in the system. It is 
well known that solving the above system is equivalent to finding solutions of the 
equations 

v 2p = 0, (3) 

V 2u = Vp, (4) 

where p =/z-1~, and subject to the constraint that u, once determined, must be restricted 
so that the continuity equation (2) is satisfied. 

In order to generate solutions which will involve spatially constant second- and 
third-order tensors aij and bijk, respectively, it is necessary to determine the scalar 
invariants involving these tensors in combination with the position vector r. Such scalar 
invariants linear in aij and bij k a r e :  

a . ,  ~ijuaujXi,  a i j x i x  j , bimmX i , bmimXi, bmmiX i , 

bijkxixjx,. (5) 



H°(r )  

H i ( r )  

H2(r)  - 

H3( r )  - 

H4( r )  

HS(r)  = A~r-('+2) + A52, 

H6(r )  =A6r-(n+4) + A 6, 

where Aj are arbitrary constants. 
From equations (4) and (6) 

direction Xp is given by 
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the general form for 

Up(r) = h°( r )aiiXp -4- hl ( r )eijkakjxix p + hl ( r )emkakj 

-4- h2( r )bimmXiXp -Jr h2 ( r )bpmm + h3( r )b,m,,xixp 

3 4 +h2(r)bmp m "4- h 1 (r)bmmiXiXp -4- ha(r)bmmp 

+ h~( r )ai jxixjx p + hSz( r )apjXj + h53( r )ajpXj 

+h6(r)bijkxixjXkXp + h6(r)bpjkxjxk + h6(r)bjpkXjXk 

+h6(r)bjkpXjXk. 

(8) 

the velocity component in the 

(9) 

Hence a general form for p(r) is assumed to be 

p(F) = n ° ( r ) a i i  + n l ( r ) , i j k a k j X i  + n2(r)b immXi  

-F-n3(r)bmimXi + n4(r)bmmiXi + H S ( r ) a i j x i x j  

"F H 6 ( r ) bijkxixjx k (6) 

where r = (xixi)l/2: 
Since a~j and bijk are general tensors, the function HP(r), in order to satisfy (3), must 

satisfy an equation of the form 

d 2 n + 2 m - 1  d r 
drr i H p ( r )  + r HP(r) = G(r)  (7) 

where n is the dimension of the Euclidean space, m is the order of the coefficient tensor, 
and G(r) is either a known function or zero. We shall here given solutions for n = 3 and 
at the end mention will be made of the special changes necessary for the case n = 2. Thus, 
for the function p ( r )  it is found that 

= _ l A i r - .  +A°r-("-2) +A ° -  1ASzr2 ' 
n n 

= Aaar -" + Aa2, 

n12A6r-("+2) + A21r-" + A2 + n-~A62r,  

1 A6r-(.+ 2) + A3r-.  + A32 _ l____~A6r2 ' 
n + 2  n +  

.+21 A~r_(. +2)+A4r_ .+A 4 . 1 2 A 6 r  2, 
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Substitution of (9) and (6) in (4) requires that the functions hPq(r) satisfy the following 
differential equations: 

d2 h( ( r )  + n + 2m + 1 drd h f ( r )  g l ( r ) ,  d r  2 r 
(1o) 

where p ~ (0, 1, 2 . . .  6} and q = 1, and 

d 2 n + 2 m - 3  d 
h; + g r h ~ ( r ) = g z ( r ) ,  (11) dr 2 r 

where q 4= 1, p ~ {0, 1, 2 . . .  6). In the above, n and m are again the dimensions of the 
space and orders of the coefficient tensors aq and bok, respectively, and gl(r), g2(r) are 
either known functions or zero. The solutions for equations (10) and (11) are given by 

h°(r)  1 A 5 ~ - - ( n + 2 )  ..L d O ~  - n  l a O . 2 - n  2.13 . . ..a 3 . '}- Li..I 1 . "1- A°4 - ( A52 + nA~ ) r  2 
n +  n ( n + 2 )  ' 

1 - - 1  - n  hl (r )=Alr- (n+2)+~A1 r +A 1, 

h~(r) = -1A]3r-n  + A~r 2-" + A]6 + A 1 -  2A]4 1 
n 2n  r ,  

hl (r) = _ 
; 1 4A6r_(n+4 ) + 1-2 - .  + A ] -  A6 + (n + 2)A ] ,2 A2r-(n+2) + ~:llr 

n ( n + Z ) ( n + 4 )  r ' 

h~(r) = 
(n + 2)(n + 4) 

A63r_(n+2) - A 6 + 2 ( n +  2)(A23 + A  6) r - "  
2 n ( n + 2 )  

+ A 2 r 2 - . + A z + A 2 - 2 (  A ] + A 6 )  r 2 A62-2A64 
- -  r 4 ' 

2n 2(n + 2)(n + 4) 

1 - - 3  - n  - -  h~(r) = A63 r - ( " + a )  -{- A ~ r  - ( n + 2 )  + ~2A1 r -I- A 3 -  A 6  + ( n  "at- 2 ) A  6 ,2 

n - r .  ( n + 2 ) ( n + 4 )  r , 

h ~ ( r ) =  (. + 2)( .  + 4) 
A6r_(.+2)_ A~ + 2 ( n +  2)(A 3 +A67) r - "  

2 n ( n +  2) 

+ A 3 r 2 - . + A 3 + A 3 2 - 2 ( A 3 + A 6 )  r 2_  A 6 - 2 A  6 
2n 2(n + 2)(n + 4) r4, 

h4x(r) = l____~A6r-(.+a).-#4_-(.+2)..3. -~- ~-~,'~4"-"- +A44 _ A6  ̀ __ _ + (n + 2)A 6 .2 
3 I , ) t ) 'n+Z"n+4 . t  , n + 4  
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1 4) A6r-("+2) A6 + 2(n + 2)(A 4 + A 6) r - "  
h 4 ( r ) =  ( n + 2 ) ( n +  - 2 n ( n + 2 )  

+A4r2-"+A4+A 4-2(A 4+A60)r2  A 6 - 2 A  6 
2n - 2(n + 2)(n + 4) r4, 

1 A5j.-(n+2)..~A 5, h~( r ) = A~r -(°+4) + ~'~1- 

A52- 2A54 .2 h52(i')- 12A53r-("+2)+ASr-"+A56+ 2 ( n + 2 )  ' n-k- 

+ 2) ' 

h6( r ) = A6r-(.+6) = ~-~,-1.6.-(.+4) ." A 6 ' 

- A ~ -  2A: h~(r) = ~ - ~ A ~ r  (°+6)+ A~r(°+2) + A~ + ~ ; , + ~  r '2 

- 1  A 6 _ 2A 6 
h~(r) = ~ 4  4A~r (°+" + A~r ("+2)+ A~ + ~ ; , + ~  r 2 

a -  A ~ -  2A~r2 h i ( r )  = v 4  ~A~r "("+4) + A~r -~"+2) + A6,o + (12) 
2(n + 4) 

m 

Substitution of (9), using (12), in (2) gives rise to a set of differential equations of the 
form 

r ~-~h~(r) + (n + m)h~(r) = g3(r)  (13) 

where n, m are as before and g3(r) inyolves hPq(r) for q 4:1 and their derivatives. This 
set of equations when solved impose the following restrictions on the A~: 

A16= - 2 ( n +  2)(A 6 + A  6 +A6) ,  

3A 6 = - ( n  + 1)(n + 6)A 6, 

2A~= -n(n + 4)A54, 

A~ = -A~, 

A4= - 2 ( 2 - n ) A  4, 

A 4=  - ( n -  1)(n + 2)A 4+  2A16o - n (A 6 +A6) ,  
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A 3= - 2 ( 2 -  n)A~, 

A 3 = - ( n -  1)(n + 2)A]+ 2A 6 -  n(A6o +A6), 

A2= - 2 ( 2 - n ) A  2, 

A 2= - ( n -  1) (n+ 2)A 2 + 2A66-n(A68 +A6o), 

A 1= - 2 ( 2 -  n)A~, 

A~= - ( n -  1)(n + 2)A 1, 

A ° = 0, 

hA°4 = -(A56 + A58). (14) 

When the changes indicated by (14) have been made in (8) and (12), the functions H P ( r ) ,  

ht~(r) for n = 3 are as follows: 

H°(  r ) = _ l A i r - .  + A ° - 1AS r2 
n n 2 , 

H I ( r ) = A l r - n + A  1, 

H2(r)  = 2(A 6 + A 6 + A69)r -("+2) + A2r -" +A22 - 

H 3 ( r ) =  2(A 6 +A67 + A6)r -("+2) + A~r-" + A 3 -  - -  

H4(r) = 2(A 6 + A  6 +A6)r  -("+2) +A4r -" + A ~ -  - -  

HS(r) =A15r -('+2) + A~, 

H6(r) = - 2 ( n +  2)(A 6 + A 6 + A6)r -("+4) + A 6, 

1 2 A62r2' 
n +  

n 1 2A6r2, 

1 2A~r2, 
n +  

hO(r) = _~+12AS3r. (.+2) + AOr-. A56 + AS8 1 AS2r2, 
n n(n + 4) 

1 A1 
( n -  1)(n +2)  2, 

hl(r)  = A13 r-(n+2) + ~Alr - -  

n +  1 Air2 
2 ( n - 1 ) ( n + 2 )  2 , 

h ~ ( r ) =  - l A i r - ' +  1 Air 2-" + A~ + 
n 2 ( n -  2) 1 

nT4 1 - 2  - n  h12(r) = A6r (n+4)+A23r-("+2)+TA1r 

r 2 
A 2 -  2A 6 + n ( A  6 + A60) 

- (15) 
( n -  1)(n + 2) (n + 1)(n + 2)(n + 6) 
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h2(r )  = 
(n + 2)(n + 4) 

A6r-( .+ 2, + 1 (A6 + A69 + A~ )r-" + - -  
n 2 ( n -  2) 

AZr 2-" + A 2 

+ 
( n +  1 ) ( A 2 - 2 A 6 )  + 2(A 6 +A6o) 2 

r - -  

2 ( n -  1)(n + 2) 
n + 3 A6r4 

2 ( .  + 1)(n + 2 ) ( .  + 6) 2 , 

h~(r)  = ~+14A6r (.+4)+ A~r-( .+2)+ ½A~r -" -  
A32 - 2A 6 + n ( A  6 + A6o) 

( n -  1)(n + 2) 

(n + 1)(n + 2)(n + 6) 
r 2 , 

h~(r)  = l n + 4) A6r-( .+ 2) + l f A6 + A 6 -  A~ ) r - "  + - -  
(n + 2)( n t 5 2(n - 2) 

A~r 2-" + A36 

+ 
(n + 1)( A32 - 2A 6 ) + 2(A 6 + A6o ) r' 2 _ 

2 ( n -  1)(n + 2) 
n + 3  

2(n + 1)(n + 2)(n + 6) 
A6r 4 

2 , 

h~(r)  = "-+14 1 ~ 4  - n A6r-(n+4) + A4r-(n+2) + ~Alr - 
n 

A ~ -  2A6o + n ( A  6 +A68) 

( n -  1)(n + 2) 

(n + 1)(n + 2)(n + 6) 
r 2 , 

1 4) A6r-("+2) + 1 [ A6 h 4 ( r ) = ( n + 2 ) ( n +  . ~  5 + A 6 - A 4 ) r  -"  

+ m 1 A4r2_ . + A46 + 
2 ( n -  2) 1 

(n+  1 ) ( A 4 - 2 A 6 o ) +  2(A 6 +A 6) .2 
r 

2 ( n -  1)(n + 2) 

_ n + 3 A6r4 
2(n + 1)(n + 2)(n + 6) 2 , 

1 ~ 5  j . - ( n + 2 )  h ~ ( r ) = A ~  r-(n+4) + ~ 1 -  
n (n+4 )  m A 5 2 ,  

h52(r) = ~+12A~r (.+2)+ A~r-" + A56 + 
n + 2  

2n (n  + 4) 
AS r 2 

2 , 

n + 2 ASr2 h~(r)  = n+2----~1 A~r-("+2)-A~r-"+A58 + 2n(n  +4)  2 , 

3 A6 h61(r) =A6r  - ( "+6) -  (n + 2)(A 6 + A  6 + A 6 ) r  - ( "+4) -  (n + 1)(n + 6) 2, 
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h 6 ( r ) =  ~+14A6r ("+4) + A6r-'"+2) + A6 + n + 3  

2(n + 1)(n + 6) 
A6r, 

- 1_4 n + 3 A6r, h 6 ( r ) -  n--+ A63r {"+4) + Agr-("+2) + A68 + 2(n+l)(n+6) 

h6(r) = ~+14A6r (n+4} + A6r-(n+2) + A6o + n + 3  
2(n + 1 ) (n+6)  A~r2" (15) 

The functions HP(r) and hqP(r), as given in equations (15), are valid in three-dimen- 
sional Euclidean space. However, for the special case of n = 2, the functions presented 
above are still valid, provided that certain minor changes are made. The necessary 
changes in equations (15) are 

1 s 1 s r2-n ~ ln r, 2( n _ 2-----~ Al ~ ~A1 

where s ~ (1, 2, 3, 4}. 
Equations (6) and (9) together with (15) constitute the general solution of the Stokes 

equations (1) and (2). Once the boundary conditions for a specific problem are pre- 
scribed, the corresponding general solution is easily generated from these equations. We 
remark that these solutions are not complete to the same degree as those of Lamb [2]. In 
the next section we shall illustrate their usefulness. 

3. Illustrations 

In the present section we consider some applications of the method. 
(i) We first consider the Stokes flow for a uniform free stream past a solid sphere. With 

no loss of generality the boundary conditions can be written as 

P~ =P0,  u~ = Ue 3, u = 0 on r = 1. (16) 

The cartesian-tensor forms for these boundary conditions are 

p ~ = a ; ; ,  U;~=C;jkakj, U;=0  on r = l ,  (17) 

where we have assumed 

a i i  = P o ,  a21 = U,  

b;i ~ = 0 for all 

aij = 0 otherwise, 

i, j ,  k. (18) 

From (17), it appears that the most natural choice for the coefficients in (15) is 

A m = 0 except when m = 0, 1. (19) 
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Substitution of (15), using (19), in (6) and (9) gives 

1 p = A ° 2 a i i + ( A ~ r - 3 + A 2 ) c i j k a k j x i ,  

1~1 3 I A 1 ~c u , = A ° r - 3 a i i x , + ( A l r - 5  +7A1 r - ~  2] i j kak jXiXl  

1 1 2 + (  _ ~A3rl--a -3 + 7aarl--1 -1 + A16 + 5A2r )e/;kakj" (20) 

In order for (20) to agree with the boundary conditions (17) it is necessary to choose 

A ° = 1 ,  A ° = O,A  = - 3 ,  = O, 

A ~ = 3 ,  A ~ = I .  (21) 

The required solution thus becomes 

p = p o ~ + ( - ~ r - 3 ) U x 3 ,  

u/= ( 3ar-5 - 3r -  3)Ux3x, + ( -  l r - 3  - 3r-a + 1) U8,3. (22) 

With the pressure and velocity components known, other quantities of interest, such as 
drag, etc., can be easily calculated. We also point out that solutions when the free stream 
velocity is of the form u~ = Ule a + U2e 2 can be easily obtained by superposition of the 
solutions obtained in the above manner. 

(ii) We next consider the linear shear flow past a solid spherical body. The boundary 
conditions in the cartesian-tensor form can be written as 

p~ = O, ul~ = a l j x j ,  

u, = l ( a  O -  aj , )x j  on r = 1. (23) 

The proper choices for the tensors a~j and b,j k in this case are 

all=O, bi jk=O for all i, j , k .  (24) 

Consequently, the appropriate choice for the coefficients in (15) is 

A m = 0  except when m = 5 .  

With this choice, the pressure and velocity vector in (6) and (9), become, respectively, 

p = ( A ~ r - '  + A52)ai,xixj, 

Ul = ~,7tll - 5  _ .2iA 2 2  5 + A 5 r - 7 ) a i j x i x j x l  + [ 5 - 5  2 5A3rl-5 - 5  i ~ A 2 r  -- + A55r - 3 + A56 )a l jx j  

+ (4~A52r2 _ 5a3r1,5 -5 _ A55r-3 + A56)aj/xj. (25) 
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The solution (25) will satisfy all the boundary conditions (23) if 

A ~ = 5 ,  A ~ = 0 = A ~ = A 5 6 ,  A ~ = ~ ,  A ~ = I .  (26) 

Equations (25) and (26) thus give the required solution as 

p = _ 5r-Sai jxixj ,  

Ul= ~ ( r -V- -  r -5 )a i j x i x j x t  + (--½r -5 + 1)al jx  j + ( - -½r-5)a j tx j .  (27) 

We again point out that solutions when the shear flow is in another direction can be 
obtained in the above manner. One could also obtain the solution when the shear flow is 
acting simultaneously in different directions. 

(iii) We next consider a quadratic or a paraboloidal flow past a sphere which is centred 
at the origin. We point out that the solution for an off-centred quadratic flow is 
equivalent to the centred flow superimposed on a uniform flow plus a shear flow. The 
boundary conditions for the quadratic flow are 

poo=akx3,  u o ~ = k ( x  2 +y2)e3 ,  u = 0  on r =  1. (28) 

where k is a constant. These boundary conditions can be written in suitable cartesian- 
tensor forms as 

Poo = 2bimmXi, Ulo o = bljkXjX ~, U t = 0 on r = 1. (29) 

The appropriate choices for the tensors a~j and bij k are found to be 

aij  ~- O, b311 = b322 = k,  bij k = 0 otherwise. (30) 

From (29), the natural choice for the coefficients in (15) is 

A ~ = 0  except when m = 2 , 6 .  (31) 

Substitution of (31) in (15), and thence in (6) and (9), yields 

p = [ AZr -3 + A22 + 2(A 6 + A 6 + A 6 ) r -  5] bimmXi 

+ [ A ~ -  10(A 6 + A 6 + Ag)r -V]b i j kx ,x jxk ,  (32) 

u, = [ l a2"-3  + A Z r - 5 [ : ~ v  _ v•3 ra•6 .-7 _ ~ A  2 ,  2 _ 2 A 6 6 + 3 ( A 6 + A 6 0 ) _ ~ A z r ,  6 2 ]bimmXiX 1 

[1 A 2 . - I + A  ~ 1 A 6 . - 5  1 6 + [ T z a  1 .  + . . , a  3 .  + ~ ( A v + A 6 - A Z ) r  -3  

+ ~ { 4 ( A  2 -  2A 6) + 2(A 6 + A 6 o ) } r 2 - ~ a 6 2 r ' ] b , , , m  

+[A r 5(A  + + 
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A 2 = - ½ ,  A2=2,  A~=~,  A2=O, 

A 6=1, A 6=~,  A 6 = - 1 ,  A 6=~,  

Hence the required solution becomes 

A 6 = ~ ,  A 6 = _ ~, 

A6o = 1. 

p =  ( - ½ r  -3 + ~]r-5 + 2)bimmX i + (--~-r-7)bijkxixjxk, 

Ul= (--¼r -3 + ~]r - 5 -  ~r-7)bimmXiXl + (¼r -1 + lr-5 + ~4r-3)blmm 

+ ( ~ r - 9 _  35r - 7 ' -  _ ~ r  -7 ~r -5 T )OijkXiXjXkXt + ( -- + 1)bokxjxk 

+ ( - ~ r  -7 + ~r -5 - 1)bjlkXjX k + ( - ~ r - 7 - ~ r  -5 + 1)bjk,xjxk. (36) 

We point out that the present solution agrees with Simha [4]. Moreover, the solution for 
quadratic flows in the other direction can be written down easily by the above approach. 

(iv) As a final illustration we consider the slow uniform flow of an incompressible 
viscous fluid past a fluid sphere. This flow is similar to the one discussed in (i) except that 
now we have a fluid sphere and, therefore, the boundary conditions at the surface, 
assuming it remains spherical, will be different. Thus, if we distinguish the fluid inside 
and outside of the spherical drop by appending the superscripts i and e, respectively, the 
boundary conditions can then be written as 

u I 2  = '312a2, = V ,3, 

u (0 remains bounded at r = O, 

and 

t~;)Xj  (e) = t~j)Xj (i) -- lkl  X k X I X  i -- tk l  X k X i X  i o n  r = 1 .  

It should be pointed out that the third, fourth and fifth conditions in (37) represent the 
continuity of the normal component of the velocity, the tangential component of the 
velocity and the tangential stress on the surface, respectively, 

u}e )x i  = u} i )x l  = 0 o n  r = 1 ,  

u ~ e ) - -  u ( e ) x j x I =  u~i) -- u ( i ) x j x I  on r =  1, (37) 

(34) 

(35)  

[ __ 1 ~ 6  --7 ~a3r + A6r -5+A76+ ~A6r2]b,jkxjxk 

_1_ [__ 1 ~ 6  --7 ~A3r +A6r -5+A6+ 1-6 21 ~A2r I bjtkxjxk 

_[._ [ _  1- -6  - 7  1 - - 6  21 w%r + A6r-5 + A6o + ~a2r  I bjklXjXk" (33) 

The general solutions (32) and (33) will satisfy the boundary conditions (29) provided 
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From (37) it appears that the appropriate choice in (15) is An" = 0 for all except when 
m = 1, a2a = U, aij = 0 otherwise, and bij k = 0 for all i, j ,  k. Thus, we write 

p(e) = (Aaar-3 + A12 )Ux3 ' 

U} e) = ( A i r  -5 + ½Air - 3 -  ~aa2 )Ux3x t + ( -]Aa3 r-3 + ½All r-a + A16 + ½Air 2 )USt3 , 

(38) 

with similar expressions for the fluid inside the drop. In particular, we replace An" by Bq p 
for the fluid inside the droplet and write 

p(i) = ( BIr -3  + B~ )Ux3, 

1~1--3 1 X ) U x 3 X l + ( l ~ l - 3  1 ~ 1 - I + B I + ~ _ / ~ s F  )U~13. u~ ̀) = ( B]r-' + -~lJlr I~B 2 _ ~/~3 r + ~ l r  1 ~ 1  2k 

In order that (38) and (39) satisfy the boundary conditions (37), it is necessary that 

A 1 = 0 ,  A 1 =  1, B 1-=o~ = 0 ,  ~A 3 2  1 + A l l +  1 = 0 ,  

w l + ~ o W l = 0 ,  1 1 1 1 ~A 3 - ~A a - 1 = - B e  1 - ~B2,1 1 

(39) 

On solving the above system of equations we find 

3 2 0 + 3  
A~ 4 ( 1 + 0 ) '  A I =  2 ( 1 + o ) '  A ~ = I ,  A ~ = 0 ,  

o 5o (41) 
Bll=0 ,  B ~ = 0 ,  B 6 a = 2 ( l + o ) ,  B~=I+------ ff 

where o = ~(e)/~(i) is the ratio of the viscosities. On substituting these values in (38) and 
(30) we obtain the desired solution as 

20 + 3 r_3Ux3 ' 
P(') = 2(1 + o) 

[ 3 _, 
u e) = 4(1  + r , tl -t- o )  J 

1 r_ 3 2o + 3 r_ a ] 
+ 4(1 + o--------~ 4(-1 + o)  + 1  USt3, (42) 

2#(e)A13 = 3/~(i)~1 (40) 
-"~-'- "2 • 



p(i) = 50 
1 + o UX3' 
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o [ o 0 2 ]  
u}O 2 ( l +  o )  Ux3x t+  2 ( l +  o-------~ + ~-+---oo r U~13" (43) 
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